Nonhomologous end joining-mediated gene replacement in plant cells.
نویسندگان
چکیده
Stimulation of the homologous recombination DNA-repair pathway via the induction of genomic double-strand breaks (DSBs) by zinc finger nucleases (ZFNs) has been deployed for gene replacement in plant cells. Nonhomologous end joining (NHEJ)-mediated repair of DSBs, on the other hand, has been utilized for the induction of site-specific mutagenesis in plants. Since NHEJ is the dominant DSB repair pathway and can also lead to the capture of foreign DNA molecules, we suggest that it can also be deployed for gene replacement. An acceptor DNA molecule in which a green fluorescent protein (GFP) coding sequence (gfp) was flanked by ZFN recognition sequences was used to produce transgenic target plants. A donor DNA molecule in which a promoterless hygromycin B phosphotransferase-encoding gene (hpt) was flanked by ZFN recognition sequences was constructed. The donor DNA molecule and ZFN expression cassette were delivered into target plants. ZFN-mediated site-specific mutagenesis and complete removal of the GFP coding sequence resulted in the recovery of hygromycin-resistant plants that no longer expressed GFP and in which the hpt gene was unlinked to the acceptor DNA. More importantly, ZFN-mediated digestion of both donor and acceptor DNA molecules resulted in NHEJ-mediated replacement of the gfp with hpt and recovery of hygromycin-resistant plants that no longer expressed GFP and in which the hpt gene was physically linked to the acceptor DNA. Sequence and phenotypical analyses, and transmission of the replacement events to the next generation, confirmed the stability of the NHEJ-induced gene exchange, suggesting its use as a novel method for transgene replacement and gene stacking in plants.
منابع مشابه
The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining.
During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic fun...
متن کاملMismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining.
In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) prot...
متن کاملCas9-based genome editing in Arabidopsis and tobacco.
Targeted modification of plant genome is key to elucidating and manipulating gene functions in plant research and biotechnology. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome-editing method in diverse plants that traditionally lacked facile and versatile tools for targeted genetic engineering. T...
متن کاملAgrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is po...
متن کاملMicrohomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex
Microhomology-mediated end joining (MMEJ), an error-prone pathway for DNA double-strand break (DSB) repair, is implicated in genomic rearrangement and oncogenic transformation; however, its contribution to repair of radiation-induced DSBs has not been characterized. We used recircularization of a linearized plasmid with 3΄-P-blocked termini, mimicking those at X-ray-induced strand breaks, to re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 162 1 شماره
صفحات -
تاریخ انتشار 2013